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ABSTRACT

This paper presents some approaches to modeling the dynamic response of
wind turbine systems to atmospheric turbulence. The first section deals with
one possible method for modeling the wind turbulence inputs. The second sec-
tion looks at the machine response to the turbulence, and shows why the result-
ing loads éhould be computed using a coupled dynamic model. The third section
examines some of the problems encountered when estimating the fatigue life of
a turbine exposed to random atmospheric excitations. In the final section, some
suggestions are made for alternate approaches to modeling the effects of turbu-

lence on wind systems.

THE WIND INPUT

It was the goal of the research work at Oregon State University to develop
a method for computing the effect of atmospheric turbulence excitations which
treated the wind input and the turbine response using the statistical techniques
of random vibration theory, and avoid the artificial concept of a discrete deter-
ministic wind gust. A complete statistical description of the turbulent wind
field over the rotor disk was computationally impossible, so simplifying assump-

tions were made. A model was developed that preserved many of the physical pro-

(KASA-CR-184806) WIND TUBRBIME S1EUCTIURAL
BESPCMSE DGE 1C KIND JURBULEME {Cregon
State Univ,.) 1¢ 1 “

N8S-T7(3¢€5

Unclas
00/39 0192951




perties which were known to cause dynamic response of wind turbines, but was com-
putational simple and could be used in either the frequency domain or the time
domain. The turbulence field at the rotor disk is approximated with a set of
velocity components which are uniform over the rotor disk, and a set of six
velocity gradients across the disk. Thus, the model includes all three velocity
components, and allows for both horizontal and vertical wind shears in each veloc~-

ity compcnent. The wind inputs can thus be written as
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where the mean wind is in the y direction, the commas imply differentiation with
respect to the coordinate of the following subscript, and the uniform velocity
terms, Vi, and the linear gradient terms, Vi," are functions of time.

In order to simplify the correlation model, and because certain combinations

of the gradient terms in the plane of the rotor always appear together in the

linearized aerodynamic relationships,the following quantities are defined.

=1 - T =41
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Then the turbulent velocity at the rotor can be rewritten as
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where the nine turbulence inputs: VvV _, V. , V_ , V , vV
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vary with time and can be shown to be statistically uncorrelated.
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A correlation model for the various velocity components is derived using
the Von Karman isotropic turbulence model to obtain the correlation between
velocities at spatially separated points. Using this correlation model for the
turbulence field, the velocity at the rotor disk is approximated by the time
dependent uniform and gradient terms of Eq. (2). These terms are chosen to mini-
mize the expected error between the true velocity and the approximate velocity
over a region the size of the rotor disk. Furthermore, the power spectral densi-
ties are approximated by a simple rational form which corresponds to an exponen-
tially correlated random process, and can be easily used analytically, or for time
domain simulations. This model is conveniently expressed by the stochastic dif-

ferential equation

(4) 4 + au = bw
where u = instantaneous value of one of the terms
Vx""’vy,x"°"sz’ etc.
w = nondimensional white noise with power spec-
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fﬂ b, for uniform terms
b o= ¢
Y
- ient terms
kLR b, for gradien
02 = turbulent velocity component variance
L = turbulence integral scale
Vw = mean wind speed
R = rotor disk radius

where the nondimensional coefficients a, and b, are tabulated for a wide variety
of turbine size to length scale ratios, (R/L). A detail development of this
model, as well as, some typical results have been documented in references (1,2).
At this time, work is underway to improve this wind model by adding terms
which allow for a quadratic variation in the longitudinal component of the turbu-

lence. This effort is to be completed in September, 1982.

THE TURBINE RESPONSE

The wind turbine model is shown schematically in Figure 1. Both the rotor
and the nacelle are assumed to be rigid bodies which move in unison, except for
the spinning rotor. Due to tower flexibility, the nacelle and rotor are free to
translate in a plane parallel to the ground and rotate about the top of the tower
in pitch and yaw. The yaw angle of the rotor axis is defined by the angle, ¢,
and the pitch angle by yx. The lateral translation, U, is in the x direction,
while the V translation is in the y direction along the rotor axis. The rotor
spin velocity is given by Q + @, where 0 is the mean rotation rate and ¥ is some
small fluctuation. For the c;se of a turbine with a three-bladed rigid rotor, the
basic principles of Newtonian mechanics and linear, gquasi-steady aerodynamics

give motion equations of the form



Table 1. Wind Model Assumptions and Important Features

The velocity components are correlated using the Von Karman
isotropic turbulence model.

The turbulent velocity field at the rotor disk is approximated
using three uniform terms plus six gradient terms.

Each of these nine turbulence inputs is modeled as a sta-
tionary, exponentially correlated random process, which can

be represented by a first order linear differential equation.
Velocity shears caused by turbulence seem to result in signif-
icant turbine response and are modeled for all the velocity
components.

Threé wind parameters are required to model a specific site:
the mean wind, the turbulent velocity component variance, and
the turbulence length scale.

The model can be used to perform analysis in the frequency
domain, as was done for the results which will be presented
here, or the differential equations of the wind model can be

used to drive any type of time domain simulation.
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The Turbine Model
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where [M], [Cl, [K], and [F] are the inertia, damping, stiffness, input coeffi-

cient matrices,
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The terms Er and‘;¥ come from the three-bladed sums of the aerodynamic forces
that involve sin(2Qt) and cos(20t) .

Discarding the steady terms, it is convenient to transform these turbine
equations to the state space form, and to augment them with the nine wind input
equations. This forms a single set of equations with white noise as the driving

input. These may be written as

(6) {x} = [Al{x} + [B]{w}
{y} = [cl{x}
where _ -
{X}] : [0] (1] (o]
{x} = {x} (a] = | -MI' (k] -l (K] (M7 (F]
{u} (0] [0l [a]
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[C] = response matrix

The displacements represented by {x} and velocities given by {x} are deviations
from the steady values. The outputs {y} are selected by the user, and depend

on the coefficients of the response matrix [C]. With this formulation it is a
relatively straightforward numerical proceéure, to determine the complex eigen-
values of fhe A matrix and then to compute the modal matrix, which is made up of
the associated eigenvectors. The modal matrix can then be used to decouple the
equations of motion so that transfer functions between any of the nine white noise
inputs and any output, Y, may be easily computed. These transfer functions
account for differences in the energy level for the turbulence inputs, {u}l, so
that a comparison of the transfer function magnitudes provides a direct estimate
of relative importance. The final result uses the central equation from random
vibration theory Eg. (7), which states that the spectral density for any of the

outputs {y} will be given by
_ 2
(7 | {Sy(w)} = []Hyw(w)l ] {Sw}

for uncorrelated inputs. In this equation, {Sy(w)} is the spectral density of

the outputs {y}, [IHyw(w)[2] is the matrix consisting of elements which are the



Table 2. Mod-G Characteristics
Rotor Characteristics:
Rotor Radius 150 £t
Blade Chord (linear taper) 7.74 £t
at hub to
3.15 £t
at tip
Coning Angle 4°
Blade Twist (linear) 8°
System Frequencies:
1lst Bending (fore-aft) (1.59) 2.7 rad/s
2nd Bending (fore-aft) (7.5Q) 13.7 rad/s
lst Bending (side-to-side) (1.6Q) 2.9 rad/s
lst Torsion (4.99) 9.0 rad/s
Aerodynamic Properties:
Lift Curve Slope 5.73
Drag Coefficient, CDo .008
Stall not Modeled
Operating Conditions:
Wind Velocity (1.833 20 MPH
rad/s)
Rotor Speed 17.5 RPM
Pitch Setting at Tip -6.2°
Turbulence Length Scale 500 ft
Rms turbulent intensity 2.44 ft/s
Approximate Power Output 1.1 MW




PSD of yaw moment, Mz " (ft-lh)z/(rad/s)
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square of the transfer function magnitude and {Sw} is the flat spectral density
of the white noise driving inputs, which are all equal.

Using this procedure a large wind turbine called the Mod-G was analyzed. The
Mod-G is a 2.5 MW turbine with a three-bladed rotor located upwind of the tower,
and is designed for fixed-yaw operation. The specific characteristics of this
system are shown in Table 2. Figures 2 through 4 present the computation results
for the Mod-G turbine.

The primary objective of this work was to identify the features of turbulence
which are most important in wind turbine design. 1In an effort to focus on these
key features, the response at specific system frequencies was broken down into
fractional contributions from each turbulence input. The most significant results
of these calculations are tabulated in Table 3.

From ;hese results it seems clear that the most important inputs are the

longitudinal turbulence component, V&, the two associated gradient terms Vy % and

I

Y2

To examine this conclusion more closely, consider again Figures 2 through 4,
which present plots of power spectral densities for the various response variables
using, first, only the turbulence input Vy, and then comparing it with the results

when the two gradients V and

\ are added to the input. The figures clearly
YIx Y,Z

show that the response is significantly underestimated unless the turbulence gra-
dient terms V and V are included.
' X Y.,z
There are two simple conclusions which arise from the results presented
here. First, the turbine response to atmospheric turbulence should be obtained
using a coupled dynamic model which inputs the wind excitations over the appro-
priate frequency range. If this is not done, then all of the turbine natural fre-

quencies will not be excited in a realistic manner. 1In addition, it is essential

to model the spatial variations in wind velocity caused by turbulence.
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FATIGUE DAMAGE

For a structure exposed to a Gaussian narrow band loading, there are several
approaches to computing the expected life. The most straightforward is the
Palmgren-Miner rule. This rule states that, if n cycles occur at stress level
S50 and at constant amplitude, it would take Ni cycles at this level for failure,
then the fractional damage at S5 is (ni/Ni). Failure is expected when the sum

of all the fractional damages equals unity. That is when
L = . . =
{ (nl/Nl) 1

From this it is possible to determine the time to failure as

T = 1
+ [® P_(s) ds
\)of b
o N(s)
where N(s) = the number of cycles to failure at s.
+ 1 Y8 :
v = 5= — = zero crossing frequency.
o 2T Ig
-2 2
P (s) = —= ¢ ° /zos = probability density function of
P s stress peaks.
0; = the variance of the stress, s.
2 . .
og = the variance of s.

The variance can be computed from the power-spectral-density by direct integration
or directly from the system governing equations. For a single response variable,

this would be
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Ué = \f;m Ss(w)dw
and
oy = fw 038 _(w) du

where Ss(w) is the power-spectral-density for the stress s. Note that these two
integrals represent areas under spectral density curves.
Alternately, fracture mechanics techniques can be used. Fatigue-crack-

growth data can be conveniently represented by the equation

8 = ckp®

where a is crack length; N is the number of cycles; C is a material constant;
AKI is the range of the stress intensity factor; and m is an exponent in the
range 2-4.

Using this approach Pook and Greenan (3) have performed statistical compu-
tations similar to those presented above for Miner's rule, and compared the results
with a limited amount of experimental data for mild steel under narrow-band
random loading. Results for this work are reproduced in Figure 7. The spread
in the predictive results would seem to indicate that there is still some research

work that needs to be done.

These results apply only for narrow-band random loading. For wind systems
the response is generally wide-band with major contributions at the natural
frequencies of the system. While the above methods can be modified to the
more complex situation of wide-band loading as Holley (4) has demonstrated, the
linear damage rules do not predict damage nearly so well as for narrow-band
loading. 1In general, prediction fatigue life under wide-band random loads is

considered to be a research topic of significant difficulty.
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CONCLUSIONS AND RECOMMENDATIONS

This paper has put forth the following major points:

For computation of wind turbine loads, the turbulence inputs must include
terms which generate a nonuniform spatial distribution of velocity over
the rotor disk, otherwise important excitations will be lost.

The procedures used to compute the dynamic loads caused by turbulence
must allow a full dynamic response to these inputs. Quasi-steady computa-
tion and the use of discrete deterministic gusts will probably give mis-
leading results.

The response of wind turbines to turbulence inputs tends to be wide-band,
and the usual fatigue damage rules may not provide accurate estimates of
structural life for wide-band loading. This problem is not, however,
unique to wind systems. It is a generic problem common to many mechanical
systems, and should be classified as a "basic research issue” of significant

importance to the success of wind energy systems.

In addition to these major points, the authors would like to make the fol~

lowing recommendations:

1.

At this point in time, there is little experimental data, in the form of
spectral-density plots of machine loads, to use as a guide for model develop-
ment and setting design criteria. This type of data would be very helpful,
and should be developed and published. For a complete picture, the asso-
ciated wind data is also necessary.

Because the governing equation for two-bladed wind turbines contains periodic
coefficients, it would aépear at first that frequency domain techniques are

not practical. However, Holley and Bahrami (5) have extended the analysis
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presented here using Floquet theory to periodic linear systems. In addi-
tion, under some simplifying assumptions, it may be possible to use the
nonlinear time domain computer codes already developed for dynamic analysis
of turbines to compute a set of transfer functions relating a specific wind
turbulence input and any desired responses. For example, a nonlinear code
could be used to compute the response to a mean wind and a suddenly applied
linear gradient across the disk, Vy,x’ where the gradient time history is a
square wave of several cycles with each cycle of shorter duration to fully
excite higher turbine natural frequencies. From the time history of the
input and any particular output, a transfer function could then be computed
numerically. This would provide a set of linearized transfer functions
which would contain the proper frequencies, but would in some sense average-
out the effect of the periodic coefficients. This approach has the advantage
of using the existing codes and allowing the turbulence calculations to be
done separately, but would need to be fully validated for design use.

Some form of time domain analysis should also be developed. However, it
seems likely that the computation time for a full system simulation will

be long. For this reason, it may be best to model only the power train

and rotor system to validate the turbulence input modeling with field test
data. After validation of the technique, a more comprehensive turbine sys-

tem model could be developed.
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